RELACIÓN INYECTIVA
una función es inyectiva si a elementos distintos del conjunto (dominio) les corresponden elementos distintos en el conjunto (imagen) de . Es decir, cada elemento del conjunto Y tiene a lo sumo una antiimagen en X, o, lo que es lo mismo, en el conjunto X no puede haber dos o más elementos que tengan la misma imagen.
Así, por ejemplo, la función de números reales , dada por no es inyectiva, puesto que el valor 4 puede obtenerse como y . Pero si el dominio se restringe a los números positivos, obteniendo así una nueva función entonces sí se obtiene una función inyectiva.
Una función es inyectiva si cada f(x) en el recorrido es la imagen de exactamente un único elemento del dominio. En otras palabras, de todos los pares (x,y) pertenecientes a la función, las y no se repiten.
Para determinar si una función es inyectiva, graficamos la función por medio de una tabla de pares ordenados. Luego trazamos líneas horizontales para determinar si las y (las ordenadas) se repiten o no.
EJEMPLO A: Determinar si la siguiente función es o no inyectiva: f(x) = x2 – 2
|
Primero elaboramos una tabla de pares ordenados y luego graficamos.
x
|
–2
|
–1
|
0
|
1
|
2
|
f(x)
|
2
|
–1
|
–2
|
–1
|
2
|
.
No hay comentarios:
Publicar un comentario