Relaciones entre conjuntos

Relacion de conjuntos #1 - GeoGebra Hoja Dinámica

Relacion de conjuntos #1

Este es un Applet de Java creado con GeoGebra desde www.geogebra.org – Java no parece estar instalado Java en el equipo. Se aconseja dirigirse a www.java.com 6 Agosto 2013, Creado con GeoGebra
segunda relacion entre conjuntos - GeoGebra Hoja Dinámica

segunda relacion entre conjuntos

Este es un Applet de Java creado con GeoGebra desde www.geogebra.org – Java no parece estar instalado Java en el equipo. Se aconseja dirigirse a www.java.com 6 Agosto 2013, Creado con GeoGebra

   RELACIÓN ENTRE CONJUNTOS

El término conjunto y elemento de un conjunto son términos primitivos y no definidos. De un punto de vista intuitivo parece ser que cualquier colección de objetos puede ser considerado un conjunto. Sin embargo esto no es así, ya que de lo contrario se llega a paradojas. Entender los conceptos de Relación y de Función es de suma importancia en Matemática.
Para lograr esa comprensión es necesario adentrarnos en la noción de Correspondencia, ya que esta tiene un papel fundamental en las relaciones y funciones.
Lo primero es entender que Correspondencia es equivalente a Relación. En nuestra lengua, decir “en relación a”, es equivalente a decir “corresponde a”.
Ejemplos:
En una tienda comercial, cada artículo está relacionado con su precio; o sea, a cada artículo le corresponde un precio.
En la guía telefónica, cada cliente está relacionado con un número; o sea, a cada nombre de la guía le corresponde un número.   


Definición matemática de Relación y de Función

En matemática, Relación es la correspondencia de un primer conjunto, llamado Dominio, con un segundo conjunto, llamado Recorrido o Rango, de manera que a cada elemento del Dominio le corresponde uno o más elementos del Recorrido o Rango.

Por su parte, una Función es una relación a la cual se añade la condición de que a cada valor del Dominio le corresponde uno y sólo un valor del Recorrido.
De las definiciones anteriores podemos deducir que todas las funciones son relaciones, pero no todas las relaciones son funciones.
También debemos agregar que toda ecuación es una Relación, pero no toda ecuación es una Función.

No hay comentarios:

Publicar un comentario